11 research outputs found

    Kinetic distance and kinetic maps from molecular dynamics simulation

    Get PDF
    Characterizing macromolecular kinetics from molecular dynamics (MD) simulations requires a distance metric that can distinguish slowly-interconverting states. Here we build upon diffusion map theory and define a kinetic distance for irreducible Markov processes that quantifies how slowly molecular conformations interconvert. The kinetic distance can be computed given a model that approximates the eigenvalues and eigenvectors (reaction coordinates) of the MD Markov operator. Here we employ the time-lagged independent component analysis (TICA). The TICA components can be scaled to provide a kinetic map in which the Euclidean distance corresponds to the kinetic distance. As a result, the question of how many TICA dimensions should be kept in a dimensionality reduction approach becomes obsolete, and one parameter less needs to be specified in the kinetic model construction. We demonstrate the approach using TICA and Markov state model (MSM) analyses for illustrative models, protein conformation dynamics in bovine pancreatic trypsin inhibitor and protein-inhibitor association in trypsin and benzamidine

    Diffusion maps tailored to arbitrary non-degenerate Ito processes

    Get PDF
    We present two generalizations of the popular diffusion maps algorithm. The first generalization replaces the drift term in diffusion maps, which is the gradient of the sampling density, with the gradient of an arbitrary density of interest which is known up to a normalization constant. The second generalization allows for a diffusion map type approximation of the forward and backward generators of general Ito diffusions with given drift and diffusion coefficients. We use the local kernels introduced by Berry and Sauer, but allow for arbitrary sampling densities. We provide numerical illustrations to demonstrate that this opens up many new applications for diffusion maps as a tool to organize point cloud data, including biased or corrupted samples, dimension reduction for dynamical systems, detection of almost invariant regions in flow fields, and importance sampling

    A weak characterization of slow variables in stochastic dynamical systems

    Full text link
    We present a novel characterization of slow variables for continuous Markov processes that provably preserve the slow timescales. These slow variables are known as reaction coordinates in molecular dynamical applications, where they play a key role in system analysis and coarse graining. The defining characteristics of these slow variables is that they parametrize a so-called transition manifold, a low-dimensional manifold in a certain density function space that emerges with progressive equilibration of the system's fast variables. The existence of said manifold was previously predicted for certain classes of metastable and slow-fast systems. However, in the original work, the existence of the manifold hinges on the pointwise convergence of the system's transition density functions towards it. We show in this work that a convergence in average with respect to the system's stationary measure is sufficient to yield reaction coordinates with the same key qualities. This allows one to accurately predict the timescale preservation in systems where the old theory is not applicable or would give overly pessimistic results. Moreover, the new characterization is still constructive, in that it allows for the algorithmic identification of a good slow variable. The improved characterization, the error prediction and the variable construction are demonstrated by a small metastable system

    Pseudo generators for under-resolved molecular dynamics

    Get PDF
    Many features of a molecule which are of physical interest (e.g. molecular conformations, reaction rates) are described in terms of its dynamics in configuration space. This article deals with the projection of molecular dynamics in phase space onto configuration space. Specifically, we study the situation that the phase space dynamics is governed by a stochastic Langevin equation and study its relation with the configurational Smoluchowski equation in the three different scaling regimes: Firstly, the Smoluchowski equations in non-Cartesian geometries are derived from the overdamped limit of the Langevin equation. Secondly, transfer operator methods are used to describe the metastable behaviour of the system at hand, and an explicit small-time asymptotics is derived on which the Smoluchowski equation turns out to govern the dynamics of the position coordinate (without any assumptions on the damping). By using an adequate reduction technique, these considerations are then extended to one-dimensional reaction coordinates. Thirdly, we sketch three different approaches to approximate the metastable dynamics based on time-local information only

    Diffusion maps tailored to arbitrary non-degenerate Itô processes

    No full text
    We present two generalizations of the popular diffusion maps algorithm. The first generalization replaces the drift term in diffusion maps, which is the gradient of the sampling density, with the gradient of an arbitrary density of interest which is known up to a normalization constant. The second generalization allows for a diffusion map type approximation of the forward and backward generators of general Itô diffusions with given drift and diffusion coefficients. We use the local kernels introduced by Berry and Sauer, but allow for arbitrary sampling densities. We provide numerical illustrations to demonstrate that this opens up many new applications for diffusion maps as a tool to organize point cloud data, including biased or corrupted samples, dimension reduction for dynamical systems, detection of almost invariant regions in flow fields, and importance sampling

    A kernel-based approach to molecular conformation analysis

    No full text
    We present a novel machine learning approach to understanding conformation dynamics of biomolecules. The approach combines kernel-based techniques that are popular in the machine learning community with transfer operator theory for analyzing dynamical systems in order to identify conformation dynamics based on molecular dynamics simulation data. We show that many of the prominent methods like Markov State Models, EDMD, and TICA can be regarded as special cases of this approach and that new efficient algorithms can be constructed based on this derivation. The results of these new powerful methods will be illustrated with several examples, in particular the alanine dipeptide and the protein NTL9
    corecore